Compartir
Publique en esta revista
Información de la revista
Vol. 12. Núm. 1.Enero 2001Páginas 7-66
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 12. Núm. 1.Enero 2001Páginas 7-66
DOI: 10.1016/S1130-1473(01)70714-2
Reflexiones sobre el uso de la hipotermia moderada en el tratamiento del paciente con un traumatismo craneoencefálico grave
Reflections on the use of moderate hypothermia in the management of severely head injured patients
Visitas
2555
J. Sahuquillo*, A. Biestro**, S. Amorós***, M.A. Poca*, M. Báguena****, J. Ibáñez*, M. Noguer*****, A. Garnacho****
* Servicio de Neurocirugía. Hospital Universitario Vall d’Hebron. Barcelona
** Unidad de Cuidados Intensivos. Hospital de Clinicas de Montevideo. Uruguay
*** Unidad de Investigación de Neurotraumatología. Hospital Universitario Vall d’Hebron. Barcelona
**** Unidad de Cuidados Intensivos de Neurotraumatología. Hospital Universitario Vall d’Hebron. Barcelona
***** Servicio de Anestesiología y Reanimación. Hospital General. Hospital Universitario Vall d’Hebron. Barcelona
Visitas
2555
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas
Resumen

En los traumatismos craneoencefálicos se desencadenan una serie de alteraciones metabólicas que incrementan las lesiones primarias sufridas de forma inmediata al impacto. Es un hecho suficientemente demostrado que en los traumatismos craneoencefálicos graves, los insultos postraumáticos intra o extracraneales tales como la hipoxia cerebral, la hipotensión arterial o la anemia, exacerban la lesión neuronal y condicionan un peor pronóstico de aquellos pacientes que los sufren. La evidencia, tanto experimental como clínica, sugiere que la hipotermia moderada (32–34°C) puede limitar el efecto nocivo de estas anomalías metabólicas. Estudios experimentales y estudios clínicos controlados de hipotermia moderada, inducida durante periodos relativamente cortos de tiempo (24–48h), demuestran que esta es efectiva en el control de la hipertensión intracraneal y en mejorar el pronóstico cuando se comparan los resultados con grupos control en los que se utilizó la normotermia y las medidas terapéuticas convencionales. A pesar del probado efecto neuroprotector de la hipotermia, los trabajos clínicos sobre el tema han sido desarrollados, estudiados y seguidos de una forma inconstante por diversas razones. En este trabajo, revisamos los mecanismos neuroprotectores de la hipotermia, así como la evidencia clínica y experimental que demuestra su efecto neuroprotector en los pacientes con un TCE grave o en aquéllos que presentan hipertensión intracraneal refractaria a medidas de primer nivel. Se discuten también los resultados negativos del estudio multicéntrico de la hipotermia moderada profiláctica en TCE graves efectuado en EEUU y cuyos resultados no han sido todavía publicados. El principal problema que persiste en la aplicación terapéutica de la hipotermia moderada es la falta de una metodología sistemática para su inducción y mantenimiento. Del mismo modo, la duración óptima de la fase hipotérmica, el momento más adecuado y la metodología para iniciar el recalentamiento no han sido homogéneos en los diferentes estudios analizados. Por ello, los resultados entre diferentes centros son difíciles de comparar y analizar. Sin embargo, la mayor parte de datos disponibles sugieren que la hipotermia es altamente efectiva como neuroprotector contra los efectos adversos de la lesión neuronal traumática y en el tratamiento de las lesiones secundarias. Sin embargo, es necesario la realización de estudios clínicos prospectivos con una metodología homogénea y bien definida antes de implementar esta medida en la práctica clínica diaria. El esfuerzo más importante en los próximos años debe dirigirse a refinar la metodología, a definir el momento y el método óptimo de enfriamiento y recalentamiento, y a tratar de optimizar la metodología consiguiendo tiempos de inducción más rápidos. También es fundamental, definir el momento más apropiado y la velocidad de recalentamiento, ya que es en esta fase del tratamiento donde muchos de los pacientes adecuadamente controlados, deterioran clínicamente y en algunos casos, mueren.

Palabras clave:
Hipotermia moderada
Traumatismo craneoencefálico grave
Revisión
Neuroprotección
Abstract

Traumatic brain injury initiates several metabolic processes that can increase the primary injury. It is well established that in severe head injuries, posttraumatic secondary insults, such as brain hypoxia, hypotension or anemia, exacerbate neuronal injury and lead to a poorer outcome. Experimental and clinical evidence suggests that moderate hypothermia (32–34°C), may limit some of these deleterious secondary metabolic responses. Recent laboratory studies and prospective controlled clinical trials of induced moderate hypothermia for relatively short periods (24–48h) in patients with severe head injury, have demonstrated good intracranial pressure control and better outcome when compared with patients maintained in normothermia and given conventional treatment. Despite its proven clinical role in neuroprotection, hypothermia research has been inconstantly followed for various reasons. In this paper we review the mechanisms of neuroprotection in hypothermia, the different preclinical and clinical studies that favor its use as a neuroprotector in severe head injury or in patients in whom high intracranial pressure is refractory to first tier measures. The evidence that favors hypothermia is discussed. We also discuss the negative results of the still unpublished multicentre trial on prophylactic moderate hypothermia developed in the USA. The main problem with moderate hypothermia is the lack of a systematic methodology to induce and maintain it. Also, optimal duration of its use and the methodology and timing for rewarming have not been determined. Consequently, the results of different trials are difficult to analyze and compare. However, most evidence suggests that hypothermia provides remarkable protection against the adverse effects of neuronal damage that is exacerbated by secondary injury. Further prospective controlled trials with clearly defined methodology are needed before this method is implemented in daily clinical practice. The most important task for the years to come may be to focus on refining this procedure, defining the optimal time of cooling and rewarming and to optimize the methods of rapidly inducing and maintaining Iow temperature. It is also essential to define the most appropriate method and velocity of the rewarming phase, in which many successfully controlled patients deteriorate and die.

Keywords:
Moderate hypothermia
Severe head injury
Review
Neuroprotection
El Texto completo solo esta disponible en PDF
Bibliografía
[1.]
B. Asgeirsson,P.O. Grände,C.H. Nordström
The Lund concept of post-traumatic brain oedema therapy
Acta Anaesthesiol. Scand., 39 (1995), pp. 103-106
[2.]
J. Astrup,B.K. Siesjo,L. Symon
Thresholds in cerebral ischemia-the ischemic penumbra
Stroke, 12 (1981), pp. 723-725
[3.]
A.J. Baker,R.J. Moulton,V.H. Macmillan,P.M. Shedden
Excitatory amino acids in cerebrospinal fluid following traumatic brain injury in humans
J. Neurosurg., 79 (1993), pp. 369-372 http://dx.doi.org/10.3171/jns.1993.79.3.0369
[4.]
C. Berger,A. Annecke,A. Aschoff,M. Spranger,S. Schwab
Neurochemical monitoring of fatal middle cerebral artery infarction
Stroke, 30 (1999), pp. 460-463
[5.]
M. Bergsneider,D.A. Hovda,E. Shalmon
Cerebral hyperglycolysis following severe traumatic brain injury in humans: A positron emission tomography study
J. Neurosurg., 86 (1997), pp. 241-251 http://dx.doi.org/10.3171/jns.1997.86.2.0241
[6.]
B. Bissonnette,L. Pellerin,R. Ravussin,V.B. Daven,P.J. Magistretti
Deep hypothermia and rewarming alters glutamate levels and glycogen content in cultured astrocytes
Anesthesiology, 91 (1999), pp. 1763-1769
[7.]
A. Boba
Hypothermia for the Neurosurgical Patient
Charles C. Thomas, (1960)
[8.]
J.M. Braughler,E.D. Hall
Involvement of lipid peroxidation in CNS injury
J. Neurotrauma, 9 (1992), pp. S1-S7
[9.]
R. Bullock,R.M. Chesnut,G. Clifton
Guidelines for the management of severe head injury
J. Neurotrauma, 13 (1996), pp. 641-734 http://dx.doi.org/10.1089/neu.1996.13.641
[10.]
R. Bullock,R.M. Chesnut,G. Clifton
Guidelines for the Management of Severe Head Injury
The Brain Trauma Foundation, inc;, (1995), http://dx.doi.org/10.1038/sc.2014.232
[11.]
R. Busto,W.D. Dietrich,M.Y. Globus,I. Valdes,P. Scheinberg,M.D. Ginsberg
Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury
J. Cereb. Blood Flow Metab., 7 (1987), pp. 729-738 http://dx.doi.org/10.1038/jcbfm.1987.127
[12.]
R. Busto,M.Y.T. Globus,W.D. Dietrich,E. Martinez,L. Valdes,M.D. Ginsberg
Effect of mild hypothermia on ischemia-induced release of neurotansmitters and free fatty acids in rat brain
Stroke, 20 (1989), pp. 904-910
[13.]
G.L. Clifton
Systemic hypothermia in treatment of severe brain injury: a review and update
J. Neurotrauma, 12 (1995), pp. 923-927 http://dx.doi.org/10.1089/neu.1995.12.923
[14.]
G.L. Clifton,R.L. Hayes
Hypothermia for the treatment of head injury
Neurotrauma, pp. 401-412
[15.]
P.R. Cooper
Delayed brain injury: Secondary insults
Central Nervous System Trauma Status Report, pp. 117-228
[16.]
F. Dexter,B.J. Hindman
Theoretical analysis of cerebral venous blood hernbglobin oxygen saturation as an index of cerebral oxygenation during hypothermic cardiopulmonary bypass. A counterproposal to the “luxury perfusion” hypothesis
Anesthesiology, 83 (1995), pp. 405-412
[17.]
T. Fay
Observations on generalized refrigeration in cases of severe cerebral trauma. Assoc. Res. Nerv. Ment. Dis
Proc, 24 (1943), pp. 611-619
[18.]
M.D. Ginsberg
Neuroprotection in brain ischemia: An update. Part II
Neuroscientist, 1 (1995), pp. 164-175
[19.]
M.D. Ginsberg,L.L. Sternau,M.Y.T. Globus,W.D. Dietrich,R. Busto
Therapeutic modulation of brain temperature: Relevance to ischemic brain injury
Cerebrovasc. Brain Metab. Rev., 4 (1992), pp. 189-225
[20.]
P.A. Gomez,R.D. Lobato,R. Gonzalez,G.R. Boto,A. de la Lama,F.J. de la Cruz
Severe head injury. Hospital 12 de Octubre data base. Description of the data and analysis of the final outcome
Neurocirugia, 10 (1999), pp. 297-308
[21.]
D.L. Graham,J.H. Adams,D. Doyle
Ischaemic brain damage in fatal non-missile head injuries
J. Neurol. Sci., 39 (1978), pp. 213-234
[22.]
D.I. Graham,D.L. Ford,J.H. Adams
Ischaemic brain damage is still common in fatal non-missile head injury. J. Neurol. Neurosurg
Psychiatry, 52 (1989), pp. 346-350
[23.]
E.D. Hall,P.A. Yonkers,P.K. Andrus,J.W. Cox,D.K. Anderson
Biochemistry and pharmacology of lipid antioxidants in acute brain and spinal cord injury
J. Neurotrauma, 9 (1992), pp. S425-S442
[24.]
J. Hartung,J.E. Cottrell
Mild hypothermia and cerebral metabolism
J. Neurosurg. Anesthesiol., 6 (1994), pp. 1-3
[25.]
P.W. Hochachka,M. Guppy
Metabolic Arrest and the Control of Biological Time
Harvard University Press, (1987)
[26.]
B. Jennett
Epidemiology of head injury
J. Neurol. Neurosurg. Psychiatry, 60 (1996), pp. 362-369
[27.]
.B. Jennett
Historical Perspective on Head Injury
Neurotrauma, pp. 3-11
[28.]
J.Y. Jiang,B.G. Lyeth,M.Z. Kapasi,L.W. Jenkins,J.T. Povlishock
Moderate hypothermia reduces blood-brain barrier disruption following traumatic brain injury in the rat
Acta Neuropathol. (Berl), 84 (1992), pp. 495-500
[29.]
R.G. Kalb
Current excitement about the glutamate receptors family
Neuroscientist, 1 (1995), pp. 60-63
[30.]
R. Kanthan,A. Shuaib
Clinical evaluation of extracellular amino acids in severe head trauma by intracerebral in vivo microdialysis
J. Neurol. Neurosurg. Psychiatry, 59 (1995), pp. 326-327
[31.]
Y. Katayama,D.P. Becker,T. Tamura,D.A. Hovda
Massive increases in intracellular potassium and the indiscriminate release of glutamate following concussive brain injury
J. Neurosurg., 73 (1990), pp. 889-900 http://dx.doi.org/10.3171/jns.1990.73.6.0889
[32.]
P.L. Lutz,G.E. Nilsson
The Brain without Oxygen. Causes of Failure and Mechanisms for Survival, Austin
R.G. Landes Company, (1994)
[33.]
A.I.R. Maas,E.W. Steyerberg,G.D. Murray
Why have recent trials of neuroprotective agents in head injury failed to show convincing efficacy? a pragmatic analysis and theoretical considerations
Neurosurgery, 44 (1999), pp. 286-1298
[34.]
P.J. Magistretti,L. Pellerin,D.L. Rothman,R.G. Shulman
Energy on demand
Science, 283 (1999), pp. 496-497
[35.]
D.W. Marion,L.E. Penrod,S.F. Kelsey
Treatment of traumatic brain injury with moderate hypothermia
N. Engl. J Med, 336 (1997), pp. 540-546 http://dx.doi.org/10.1056/NEJM199702203360803
[36.]
A. Marmarou
Traumatic Brain Edema: An overview
Acta Neurochir. (Wien), (1994), pp. 421-424
[37.]
A. Marmarou,P. Barzo,R. Fatouros,T. Yamamoto,R. Bullock,H. Young
Traumatic brain swelling in head injured patients: brain edema or vascular engorgement?
Acta Neurochir. Suppl. (Wien), 70 (1997), pp. 68-70
[38.]
L.F. Marshall,A.I.R. Maas,S.B. Marshall
A multicenter trial on the efficacy of using tirilazad mesylate in cases of head injury
J. Neurosurg., 89 (1998), pp. 519-525 http://dx.doi.org/10.3171/jns.1998.89.4.0519
[39.]
S.B. Marshall,M.R. Klauber,M. Van Berkum Clark
A new classification of head injury based on computerized tomography
J. Neurosurg, 75 (1991), pp. 14-20
[40.]
J.D. Michenfelder
The interdependency of cerebral functional and metabolic effects following massive doses of thiopental in the dog
Anesthesiology, 41 (1974), pp. 231-236
[41.]
J.D. Michenfelder,R.A. Theye
Hypothermia: effect on canine brain and whole-body metabolism
Anesthesiology, 29 (1968), pp. 1107-1112
[42.]
J.D. Michenfelder,R.A. Theye
The effects of anesthesia and hypothermia on canine cerebral ATP and lactate during anoxia produced by decapitation
Anesthesiology, 33 (1970), pp. 430-439
[43.]
G.D. Murray,G.M. Teasdale,R. Braakman
The European Brain Injury Consortium survey of head injuries
Acta Neurochir. (Wien), 141 (1999), pp. 223-236
[44.]
E.M. Nemoto,R. Klementavicius,J.A. Melick,H. Yonas
Suppression of cerebral metabolic rate for oxygen (CMRO(2)) by mild hypothermia compared with thiopental
J. Neurosurg. Anesthesiol., 8 (1996), pp. 52-59
[45.]
L.H. Pitts,T.K. Mcintosh
Dynamic changes after brain trauma
pp. 65-100
[46.]
S. Rehncrona,I. Rosén,B.K. Siesjö
Brain lactic acidosis and ischemic cell damage:1. biochemistry and neurophysiology
J. Cereb. Blood Flow Metab., 1 (1981), pp. 297-311 http://dx.doi.org/10.1038/jcbfm.1981.34
[47.]
C.S. Robertson,A.B. Valadka,H.J. Hannay
Prevention of secondary ischemic insults after severe head injury
Crit. Care Med., 27 (1999), pp. 2086-2095
[48.]
H.L. Rosomoff,K. Shulman,R. Raynor,W. Grainger
Experimental brain injury and delayed hypothermia
Surg Gynecol. Obstet., 110 (1960), pp. 27-32
[49.]
H.L. Rosomoff,R. Gilbert
Brain volume and cerebrospinal fluid pressure during hypothermia
Am. J. Physiol., 183 (1955), pp. 19-22
[50.]
H.L. Rosomoff,P.M. Kochanek,R. Clark
Resuscitation from severe brain trauma
Crit. Care Med., 24 (1996), pp. S48-S56
[51.]
Sahuquillo, J., Amorós, S., Santos, A., et al. Does an increase in cerebral perfusion pressure always mean a better oxygenated brain? A study in head- injured patients (In press). Acta Neurochir. (Wien.); Suppl.
[52.]
S. Shapiro
Neurotransmission by neurons that use serotonin, noradrenaline, glutamate, glycine, and gamma-aminobutyric acid in the normal and injured spinal cord
Neurosurgery, 40 (1997), pp. 168-176
[53.]
T. Shiozaki,H. Sugimoto,M. Taneda
Effect of mild hypothermia on uncontrollable intracranial hypertension after severe head injury
J. Neurosurg., 79 (1993), pp. 363-368 http://dx.doi.org/10.3171/jns.1993.79.3.0363
[54.]
O. Siggaard-Andersen,A. Ulrich,I.H. Gothgen
Classes of tissue hypoxia
Acta Anaesthesiol. Scand, 39 (1995), pp. 137-142
[55.]
Signorini, D.F., Alderson, R: Therapeutic hypothermia for head injury (Cochrane review). In: The Cochrane Library, Issue 2,2000. Oxford: Update Software.
[56.]
D.L. Small,R. Morley,A.M. Buchan
Glutamate receptor antagonists for the treatment of acute cerebral ischemia
Management of Acute Stroke, 48 (1999), pp. 341-361
[57.]
P.A. Steen,L. Newberg,J.H. Milde,J.D. Michenfelder
Hypothermia and barbiturates: individual and combined effects on canine cerebral oxygen consumption
Anesthesiology, 58 (1983), pp. 527-532
[58.]
S.A. Tisherman,A. Rodriguez,P. Safar
Therapeutic hypothermia in traumatology
Surg. CIin. North. Am., 79 (1999), pp. 1269-1289
[59.]
W.M. Vise
Cerebral metabolic supression as a treatment for neurological injury induces an altered physiological state
International Conference on Recent Advances in Neurotraumatology (ICRAN),
[60.]
R.J. White,L.A. Massopust Jr.,L.R. Wolin,N. Taslitz,D. Yashon
Profound selective cooling and ischaemia of primate brain without pump or oxygenator
Br. J. Surg., 56 (1969), pp. 630-631
[61.]
R.J. White,L.A. Massopust Jr.,L.R. Wolin,N. Taslitz,D. Yashon
Profound selective cooling and ischemia of primate brain without pump or oxygenator
Surgery, 66 (1969), pp. 224-232
[62.]
A. Zauner,R. Bullock
The role of excitatory amino acids in severe brain trauma: opportunities for therapy: a review
J. Neurotrauma, 12 (1995), pp. 547-554 http://dx.doi.org/10.1089/neu.1995.12.547

Sahuquillo, J.; Biestro, A.; Amorós, S.; Poca, M.A.; Báguena, M.; Ibáñez, J.; Noguer, M.; Garnacho, A.: Reflexiones sobre el uso de la hipotermia moderada en el tratamiento del paciente con un traumatismo craneoencefálico grave. Neurocirugía 2001; 12: 23–35.

Copyright © 2001. Sociedad Española de Neurocirugía
Neurocirugía

Suscríbase al Newsletter

Opciones de artículo
Herramientas
Política de cookies
Utilizamos cookies propias y de terceros para mejorar nuestros servicios y mostrarle publicidad relacionada con sus preferencias mediante el análisis de sus hábitos de navegación. Si continua navegando, consideramos que acepta su uso. Puede cambiar la configuración u obtener más información aquí.